

5-Year Results from the IN.PACT Global Study Pre-specified Cohorts In-Stent Restenosis, Chronic Total Occlusions, and Long Lesions

Gunnar Tepe MD

Department of Diagnostic and Interventional Radiology at RoMed Clinic Rosenheim, Rosenheim, DE

Disclosure

2

<<Firstname Lastname>>

□ I have the following potential conflicts of interest to report:

Receipt of grants/research support

□ Receipt of honoraria and travel support

- Participation in a company-sponsored speaker bureau
- Employment in industry
- □ Shareholder in a healthcare company

• Owner of a healthcare company

□ I do not have any potential conflict of interest

Background

- The treatment of peripheral arterial disease (PAD) in patients with multiple comorbidities is challenging and remains a global health concern, impacting approximately 236 million people worldwide.¹
- Drug-coated balloons (DCB) emerged as a novel endovascular treatment option a decade ago; numerous randomized controlled trials (RCTs)²⁻⁶ and a meta-analysis⁷ have demonstrated the superiority of DCB over uncoated percutaneous transluminal angioplasty (PTA) balloons for the treatment of PAD.
- Patients with more complex lesions, such as in-stent restenosis (ISR), lesions longer than 15 cm, and long chronic total occlusions (CTO) are usually excluded from RCTs.
- Prior to the current study, there were no long-term data available on DCBs for treatment of femoropopliteal artery disease in these distinct populations.
- This is a presentation of prospectively collected 5-year data from pre-specified in-stent restenosis, long lesion and chronic total occlusion cohorts from a large global DCB study.
- 1. Song P, et al., Lancet Glob Health. Aug 2019;7(8):e1020-e1030.
- Tepe G, et al., JACC Cardiovasc Interv. Jan 2015;8(1 Pt A):102-8.
- 3. Scheinert D, et al., J Endovasc Ther. Feb 2015;22(1):14-21.
- Rosenfield K, et al., N Engl J Med. Jul 9 2015;373(2):145-53. 4.
- Krishnan P, et al., Circulation. Sep 19 2017;136(12):1102-1113. 5.
- 6. Jia X, et al., JACC Cardiovasc Interv. Sep 26 2016;9(18):1941-9.
- 7. Katsanos K, et al., Endovasc Ther. Apr 2016;23(2):356-70.

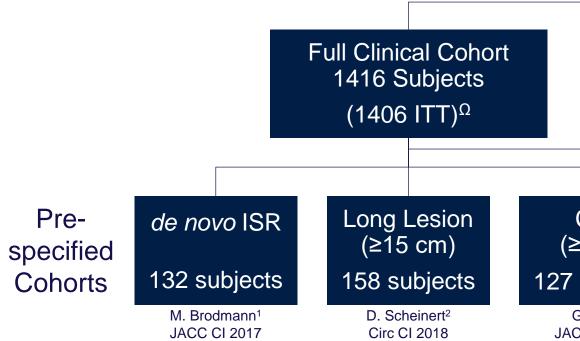
Robust Clinical Program

IN.PACT DCB Portfolio - Clinical Data for the SFA

RCTs + Pivotal Registration Studies			Real-Worl	Id Stud		
IN.PACT SFA	IN.PACT Japan	IN.PACT China [†]	IN.PACT GI	lobal S		
(EU+US) RCT [†] RCT [†]	RCT [†]		Pre-specified Imaging			
Gender			Cohorts			
Subset			Long Lesion [†]			
Diabetic Subset			ISR ¹			
			CTO ¹			
† Angiographic and DUS core lab adjudicated with clinical events committee oversight ‡ Clinical events committee oversight						

udies

Study[‡]


Regional Subsets

Belgian

Asian

IN.PACT Global Study[†]

- **Real-world**
- Prospective
- Multicenter (64 global sites)
- Single arm
- Complex femoropopliteal lesions
- Independently adjudicated [‡]
- Prospective analysis of imaging cohorts with core lab §

This presentation includes 5-year outcome data on the 417 subjects who comprise the pre-specified ISR, long lesion, and CTO cohorts

† Sponsored by Medtronic plc

[‡] Independent adjudication performed by Syntactx Clinical Events Committee, New York, NY, US

§ VasCore DUS Core Lab, Boston, MA, US, and SynvaCor Angiographic Core Lab, Springfield, IL, US

 Ω Of the 1416 ITT subjects, 10 subjects did not receive a DCB

- 1. Brodmann et al. JACC Cardiovasc Interv. 2017;10:2113-23.
- 2. Scheinert et al. Circ Cardiovasc Interv. 2018;11:e005654.
- Tepe et al. JACC Cardiovasc Interv. 2019;12:484-93. 3.
- 4. Brodmann M, IN.PACT Global 150mm Cohort 3-Year Outcomes, LINC 2020.

1535 Subjects Consented

150 mm **DCB** Cohort

M. Brodmann⁴ LINC 2020

Non-imaging cohort

СТО (≥5 cm)

127 subjects

G. Tepe³ **JACC CI 2019**

IN.PACT Global Study Independently Assessed Outcomes

Effectiveness

Freedom from clinically driven target lesion revascularization[†] through 60 months

Safety

Composite of freedom from device- and procedurerelated death through 30 days, and freedom from major target limb amputation & clinically driven target vessel revascularization[‡] through 60 months

+ Any re-intervention within the target lesion(s) due to symptoms or drop of ABI of ≥ 20% or > 0.15 when compared to post-index procedure baseline ABI. ⁺ Any re-intervention within the target vessel due to symptoms or drop of ABI of \geq 20% or > 0.15 when compared to post-index procedure baseline ABI

Baseline Patient Characteristics Reflective of Real-world Patients

Characteristics	<i>de novo</i> ISR N=132 Subjects	Long Lesion (≥15 cm) N=158 Subjects
Age (Years)	67.8 ± 10.1	69.6 ± 10.7
Male	68.9 (91/132)	66.5 (105/158)
Diabetes	35.6 (47/132)	41.4 (65/157)
Hypertension	81.7 (107/131)	87.3 (138/158)
Hyperlipidemia	72.3 (94/130)	76.2 (115/151)
Current Smoker	35.6 (47/132)	34.2 (54/158)
Obesity [†]	18.2 (24/132)	21.9 (34/155)
Coronary Heart Disease	37.0 (47/127)	51.9 (80/154)
Carotid Artery Disease	19.7 (23/117)	22.2 (30/135)
Renal Insufficiency [‡]	9.8 (11/112)	14.3 (21/147)

Data are presented as % (n/N) or mean±standard deviation

† BMI ≥ 30 kg/m2

 \ddagger Baseline serum creatinine ≥ 1.5 mg/dl

CTO (≥ 5 cm) N=127 Subjects

 67.4 ± 10.5 68.5 (87/127) 29.4 (37/126) 81.6 (102/125) 63.9 (78/122) 49.6 (63/127) 20.0 (25/125) 23.9 (28/117) 19.0 (19/100) 9.9 (11/111)

Additional Baseline Characteristics

Characteristics	<i>de novo</i> ISR N=132 Subjects	Long Lesion (≥15 cm) N=158 Subjects
Previous Peripheral Revascularization	100.0 (132/132)	55.7 (88/158)
Concomitant BTK Disease	43.0 (55/128)	47.9 (68/142)
Ankle-brachial Index [†]	0.7 ± 0.2	0.7 ± 0.2
Rutherford Category		
2	32.8 (43/131)	21.7 (34/157)
3	58.0 (76/131)	61.8 (97/157)
4	7.6 (10/131)	10.2 (16/157)
5	1.5 (2/131)	6.4 (10/157)

Data are presented as % (n/N) or mean±standard deviation

† ABI for all target limbs treated during the 1st index procedure are included (can be bilateral)

CTO (≥ 5 cm) N=127 Subjects

33.1 (42/127) 41.5 (49/118) 0.6 ± 0.2

26.0 (33/127) 63.0 (80/127) 8.7 (11/127) 2.4 (3/127)

Lesion Characteristics

Lesion Characteristics	<i>de novo</i> ISR N=132 Subjects N=150 Lesions [†] N=145 Lesions [‡]	Long Lesion (≥15 cm) N=158 Subjects N=162 Lesions [†] N=165 Lesions [‡]
Lesion Type [†] De novo Restenotic (non-stented) In-stent Restenosis	0.0 (0/150) 0.0 (0/150) 100.0 (150/150)	83.3 (135/162) 16.7 (27/162) 0.0 (0/162)
Lesion Length [‡] (cm)	17.1 ± 10.5	26.4 ± 8.6
Occluded [‡]	33.8 (48/142)	60.0 (99/165)
Occluded Lesion Length [‡] (cm)	4.9 ± 9.5	9.0 ± 10.9
<u>Calcification</u> [‡] Severe [‡]	59.4 (79/133) 8.3 (11/133)	72.0 (118/164) 19.5 (32/164)
RVD [†] (mm)	5.2 ± 0.6	5.1 ± 0.6
Diameter Stenosis [‡] (%)	84.5 ± 15.1	90.7 ± 14.3

Data are presented as % (n/N) or mean±standard deviation

† Site reported data

‡ Angiographic core lab reported. Lesions for Subjects 10220-049, 10220-043 and 13015-073 are not counted as they don't have core lab data.

CTO (≥ 5 cm) N=127 Subjects N=129 Lesions[†] N=128 Lesions[‡]

92.2 (119/129) 7.8 (10/129) 0.0 (0/129)

 22.8 ± 9.7 100.0 (124/124) 11.8 ± 8.1 71.2 (89/125) 3.2 (4/125) 5.1 ± 0.7 100.0 ± 0.0

Procedure Characteristics

Procedural Characteristics	<i>de novo</i> ISR N=132 Subjects N=150 Lesions ^Ω	Long Lesion (≥15 cm) N=158 Subjects N=162 Lesions ^Ω	
Device Success [†]	99.6 (283/284)	99.6 (444/446)	
Procedure Success [‡]	99.3 (149/150)	99.4 (160/161)	
Clinical Success §	98.5 (130/132)	99.4 (156/157)	
Pre-dilatation	64.4 (85/132)	89.2 (141/158)	
Post-dilatation	25.8 (34/132)	38.9 (61/157)	
Provisional Stent	13.3 (20/150)	39.1 (63/161)	

Data are presented as % (n/N)

† Device success defined as successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP.

‡ Procedure success defined as residual stenosis of ≤ 50% (non-stented subjects) or ≤ 30% (stented subjects).

 Ω Clinical success defined as procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge. Ω Site reported data CTO: Chronic Total Occlusion; ISR: In-Stent Restenosis

CTO (\geq 5 cm) N=127 Subjects N=129 Lesions $^{\Omega}$

99.3 (289/291)

100.0 (128/128)

98.4 (124/126)

94.5 (120/127)

49.6 (63/127)

46.5 (60/129)

IN.PACT Global: Pre-specified Cohorts 5-Year Effectiveness Outcomes

Freedom from CD-TLR through 5 Years

IN.PACT Global Full Cohort 5-year Freedom from CD-TLR rate: 69.4%

Numbe	r at risk		
88	71	63	43
24	36	48	60
Мог	* 6 4		

Additional 5-Year Effectiveness Outcomes

Cumulative Incidence by Kaplan-Meier Estimate	<i>de novo</i> ISR N=132 Subjects	Long Lesion (≥15 cm) N=158 Subjects
CD-TLR [†] (%) (Number of subjects with event)	42.0 (50)	32.7 (41)
Any TLR [‡] (%) (Number of subjects with event)	43.1 (51)	33.7 (42)

Reintervention	<i>de novo</i> ISR	Long Lesion (≥15 cm)
Through 5 Years	N=132 Subjects	N=158 Subjects
Restricted Mean Survival Time to First CD-TLR (Days ± SD)	1354.6 ± 53.6	1437.0 ± 49.9

† Clinically driven TLR adjudicated by an independent Clinical Event Committee and defined as any re-intervention within the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI.

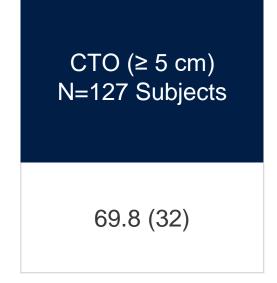
‡ Any TLR includes clinically driven and incidental or duplex driven TLR.

CTO (≥ 5 cm) N=127 Subjects

30.2 (32)

32.2 (34)

CTO (≥ 5 cm) N=127 Subjects


1465.5 ± 54.5

IN.PACT Global: Pre-specified Cohorts 5-Year Safety Outcomes

Kaplan-Meier Estimated %	<i>de novo</i> ISR N=132 Subjects	Long Lesion (≥15 cm) N=158 Subjects
Safety Composite [†] % (n) [‡]	56.0 (52)	65.7(43)

[†] Safety composite endpoint consists of: Freedom from device- and procedure-related to 30 days, freedom from major target limb amputation within 60 months, and freedom from CD-TVR within 60 months.

[‡] Percentage based on Kaplan-Meier estimate (number of subjects with event)

IN.PACT Global: Pre-specified Cohorts Additional 5-Year Safety Outcomes

5-Year Kaplan-Meier Cumulative Incidence	<i>de novo</i> ISR N=132 Subjects	Long Lesion (≥15 cm) N=158 Subjects
Major Adverse Events †	53.1 (65)	48.9 (67)
CEC-Adjudicated All-cause Death	16.7 (20)	22.4 (30)
CD-TVR	44.0 (52)	32.7 (41)
Major Target Limb Amputation	0.8 (1)	1.7 (2)
Thrombosis	10.6 (13)	5.0 (7)

Data are presented as % (n) as cumulative incidence based on Kaplan-Meier Estimate (number of patients with events)

† CEC adjudicated Major Adverse Events (MAE) defined as all-cause death, clinically-driven TVR, major target limb amputation, thrombosis at the target lesion site through 60 months

CD-TVR: Clinically Driven Target Vessel Revascularization; CTO: Chronic Total Occlusion; ISR: In-Stent Restenosis

CTO (≥ 5 cm) N=127 Subjects

43.0 (48) 19.1 (20) 30.2 (32) 0.0 (0) 7.0 (8)

IN.PACT Global: Pre-specified Cohorts All-Cause Death through 5 Years with Additional Vital Status

Freedom from All Cause Mortality through 5 Years 96.4% Vital Status Follow-up ⁺

Long Lesion

† Vital Status number based on the IN.PACT Global Study full ITT cohort

Numbe					
116	110	104	80		
24	36	48	60		
Mor					

Conclusions

- Real-world data from the IN.PACT Global Study continue to confirm long-term clinical safety and effectiveness of the IN.PACT Admiral drug-coated balloon when used to treat complex lesions
- High 5-year freedom from clinically driven TLR was demonstrated in all three pre-specified cohorts, but it was slightly lower in the de novo ISR cohort highlighting the challenging nature of ISR lesions
 - 69.8% CTO •
 - 67.3% Long Lesions
 - 58.0% de novo ISR •
- No safety issues were reported in any of the cohorts. All-Cause Mortality with vital status at 5 years:
 - 81.4% de novo ISR
 - 75.2% Long Lesions
 - 78.2% CTO •

16

These data support incorporating the use of the IN.PACT Admiral DCB into clinical treatment algorithms for complex femoropopliteal disease.